International GCSE in Mathematics A - Paper 3H mark scheme

Question	Working	Answer	Mark	AO		Notes
1	$7800 \div 9.75$ or $7800 \div 585 \times 60$	800	3	AO2	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	M1 for $7800 \div 9.45$ or $7800 \div 585$ or 13.3....
2	$28 \div(6-4)(=14)$ $\text { " } 14 \text { " } \times 3 \text { (=42) }$	42		AO1	M1 M1 (dep) A1	or use of cancelled ratios $(\operatorname{eg} 3: 6: 4=0.75: 1.5: 1)$ $28 \div 0.5(=56)$ or cancelled ratios, (e.g. 56×0.75) or M2 for $28 \div \frac{2}{3}$ oe
	$\begin{aligned} & (12 \times 2.5)+(6 \times 7.5)+(4 \times 12.5)+ \\ & (6 \times 17.5)+(14 \times 22.5)+(18 \times 27.5) \end{aligned}$ or $\begin{aligned} & 30+45+50+105+315+495 \text { or } \\ & 1040 \\ & ' 1040 ' \div 60 \end{aligned}$	$25<d \leq 30$ $17 \frac{1}{3}$ $\frac{32}{60} \mathrm{oe}$	1 4 2	AO3 AO3 AO3	B1 M2 M1 A1 M1 A1	B1 identifies $25 \rightarrow 30$ class M1 for frequency \times consistent value within interval NB. Products do not need to be added Condone one error accept 17.3(33...) For $\frac{a}{60}$ with $a<60$ or $\frac{32}{b}$ with $b>32$

Question	Working	Answer	Mark	AO		Notes
4	$\begin{aligned} & \frac{\text { Working with all } 12 \text { boxes }}{12 \times 15(=180) \text { or } 12 \times 12(=144)} \\ & 12 \times 12 \times \frac{3}{4} \times 1.6 \text { oe }(=172.8) \\ & 12 \times 15 \times 1.15 \text { oe }(=207) \text { or } \\ & 180 \times 0.15 \text { oe }(=27) \\ & \frac{1207 '-172.8^{\prime}}{36} \text { or } \frac{34.2}{36} \text { or } \\ & \frac{' 27 '+\left(' 180^{\prime}-172.8^{\prime}\right)}{36} \end{aligned}$	0.95	5	AO1	$\begin{aligned} & \text { M1 } \\ & \text { A1 cao } \end{aligned}$	for correct total cost or correct total number of melons (either may appear as part of another calculation) for revenue from all full price melons sold for total revenue or total profit dep on M3
	Alternative - working with one box $\begin{aligned} & 15 \div 12(=1.25) \text { or } 12 \times \frac{3}{4}(=9) \\ & 12 \times \frac{3}{4} \times 1.6 \text { oe }(=14.4) \\ & 15 \times 1.15(=17.25) \\ & \frac{" 17.25 "-" 14.4 \text { " }}{3} \text { or } \frac{2.85}{3} \end{aligned}$	0.95	5		M1 M1 M1 M1 A1 cao	for price of 1 melon or number of full price melons for revenue from all full price melons sold for total revenue from one box dep on M3

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& AO \& \& Notes \\
\hline \(13 \quad \begin{array}{rr}\text { a }\end{array}\) \& \[
\begin{aligned}
\& m=\frac{5-2}{-3-1} \text { or }-\frac{3}{4} \text { oe } \\
\& \text { eg. } 2=-\frac{3}{4} \times 1+c \text { or } \\
\& y-2=-\frac{3}{4}(x-1) \\
\& y=-\frac{3}{4} x+\frac{11}{4} \\
\& y=\frac{1-2 x}{6} \text { or } m=-\frac{1}{3} \text { oe }
\end{aligned}
\] \& \begin{tabular}{l}
\[
3 x+4 y=11
\] \\
shown
\end{tabular} \& \begin{tabular}{l}
4 \\
2
\end{tabular} \& AO1

AO1 \& \begin{tabular}{l}
M1

M1

M1

A1

M1

A1

 \&

for gradient

for method to find c

found values of m and c substituted in $y=m x+c$

for conclusion from correct gradients
\end{tabular}

\hline 14 \& $$
\begin{aligned}
& 26 \div 20(=1.3) \text { or } \\
& 3.6 \times 10 \text { or } 3.3 \times 10 \text { or } 1 \times 30 \text { or } \\
& 36 \text { or } 33 \text { or } 30 \text { or } \frac{26}{130}\left(=\frac{1}{5}\right) \\
& 26+3.6 \times 10+3.3 \times 10+1 \times 30 \text { or } \\
& 26+36+33+30 \text { or } 625 \times \frac{1}{5} \text { or } \\
& (130+180+165+150) \times \frac{1}{5}
\end{aligned}
$$ \& 125 \& 3 \& AO3 \& M1

M1

A1 \& | Any one frequency density (without contradiction) or, e.g. $1 \mathrm{~cm}^{2}=5$ or clear association of area with frequency |
| :--- |
| Any fully correct complete method; condone one error in bar width or bar height |

\hline
\end{tabular}

Pearson Edexcel International GCSE in Mathematics (Specification A) - Sample Assessment Materials
Issue 1 - February 2016 © Pearson Education Limited 2016

Question	Working	Answer	Mark	AO		Notes
16	180-77-39 or $\angle B A D=77^{\circ}$ and $\angle A B D=39^{\circ}$ or $\angle B A^{\prime \prime} X^{\prime \prime}=64^{\circ}$ where X is on $P A$ produced or a fully correct method to find angle $A D B$	64	5	AO2	M2 B1 B1 A1	Also accept 103-39 M 1 for $\angle B A D=77^{\circ}$ or $\angle A B D=39^{\circ}$ (angles may be stated or marked on diagram) Opposite angles in a cyclic quadrilateral add up to 180° Alternate segment theorem oe cao
17	41.5 or 42.5 or 24.5 or 23.5 or 14.5 or 13.5 $(y=) \frac{2 \times 41.5}{24.5-13.5}$	7.5	3	AO1	B1 M1 A1	A1 accept $\frac{83}{11}$ or 7.55 or $7 . \dot{5} \dot{4}$ (depending on M1) NB. Answer must come from correct working

Question	Working	Answer	Mark	AO		Notes
18	$\begin{aligned} & (x-1) \times \frac{(3 x+2)}{\left(x^{2}-1\right)} \\ & (x+1)(x-1) \\ & \text { eg } \frac{3(x+1)-(3 x+2)}{(x+1)} \end{aligned}$	$\frac{1}{x+1}$	4	AO1	M1 M1 M1 A1	correct method for divsion correct factorisation of $x^{2}-1$ correct single fraction
19	$\begin{aligned} & 130=\pi \times 4.5 \times l \\ & l=\frac{130}{4.5 \pi} \text { or } l=9.1956 \\ & \sin (A V O)=\frac{4.5}{49.2^{\prime \prime}}(=0.489 . .) \end{aligned}$	58.6	4	AO2	M1 M1 M1 A1	For exact expression or answer which rounds to 9.2 For a correct expression for $\sin A V O$ or $\cos A V B$ $\begin{aligned} & \cos (A V B)=\left(" 9.2 " 2+" 9.2^{" 2}-9^{2}\right) /(2 \times " 9.2 " \times " 9.2 ") \\ & (=0.521 \ldots) \end{aligned}$ awrt 58.6
20 ai aii aiii b		$\begin{gathered} \begin{array}{c} (0,5) \\ (3,10) \\ (1,5) \end{array} \\ \text { translation }\binom{0}{-4} \end{gathered}$	1	AO1 $\mathrm{AO} 1$	B1 B1 B1 B1	

Question	Working	Answer	Mark	AO		Notes
21	$\begin{aligned} & \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=2 \times 8 x-2 x^{-2} \\ & 2 \times 8 x-2 x^{-2}=0 \\ & x=\frac{1}{8} \quad \text { or } x=0.5 \mathrm{oe} \end{aligned}$	$(0.5,6)$	5	AO1	M2 M1 M1 A1	(M1 for one term differentiated correctly) dep on M1
22	$\begin{aligned} & \overrightarrow{A E}=\overrightarrow{A D}+\overrightarrow{D E} \text { oe } \\ & \text { eg. } \overrightarrow{D E}=\frac{1}{3} \overrightarrow{D B} \text { or } \overrightarrow{B E}=\frac{2}{3} \overrightarrow{B D} \\ & \overrightarrow{A E}=2 \mathbf{b}+4 \mathbf{a} \\ & \overrightarrow{B C}=\overrightarrow{B A}+\overrightarrow{A D}+\overrightarrow{D C}(=3 \mathbf{b}+6 \mathbf{a}) \end{aligned}$	eg. $\overrightarrow{A E}=2(\mathbf{b}+2 \mathbf{a})$ and $\overrightarrow{B C}=3(\mathbf{b}+2 \mathbf{a})$	5	AO2	M1 M1 A1 M1 A1	may be fully or partially in terms of \mathbf{a} and/or \mathbf{b} correct use of ratio may be fully or partially in terms of \mathbf{a} and/or \mathbf{b} NB Correct expressions for $B C$ and $A E$ must be given

Question	Working	Answer	Mark	AO			Notes
23	$\begin{aligned} & a+3 d=17 \text { or } a+9 d=35 \text { or } \\ & 35-17=6 d \\ & d=3 \\ & a=8 \\ & \frac{50}{2}\left(2 \times 8^{\prime}+(50-1)^{\prime} 3^{\prime}\right) \text { oe } \end{aligned}$	4075	5	AO1	M1 A1 A1 M1 A1	ft from $d=3$	M1 for $17=4 p+q$ and $35=10 p+q$ $p=3$ and $q=5$ $u_{1}=8$ and $u_{50}=155$ $\frac{1}{2} \times 50(8+155)$

