International GCSE in Mathematics A - Paper 3H mark scheme

Question	Working	Answer	Mark	AO		Notes
1	$7800 \div 9.75 \text{ or } 7800 \div 585 \times 60$			AO2	M2	M1 for 7800 ÷ 9.45 or 7800 ÷ 585 or 13.3
		800	3		A1	
2	28 ÷ (6 – 4) (=14)			AO1	M1	or use of cancelled ratios
						(eg 3:6:4=0.75:1.5:1)
	"14" × 3 (=42)				M1 (dep)	28 ÷ 0.5(=56)
						or cancelled ratios, (e.g. 56×0.75)
						or M2 for $28 \div \frac{2}{3}$ oe
		42			A1	
3 a		$25 < d \le 30$	1	AO3	B1	B1 identifies $25 \rightarrow 30$ class
b	$(12 \times 2.5) + (6 \times 7.5) + (4 \times 12.5) + (6 \times 17.5) + (14 \times 22.5) + (18 \times 27.5)$ or			AO3	M2	M1 for frequency × consistent value within interval
	30 + 45 + 50 + 105 + 315 + 495 or 1040					NB. Products do not need to be added Condone one error
	'1040' ÷ 60				M1	
		$17\frac{1}{3}$	4		A1	accept 17.3(33)
c				AO3	M1	For $\frac{a}{60}$ with $a < 60$ or $\frac{32}{b}$ with $b > 32$
		$\frac{32}{60}$ oe	2		A1	

Question	Working	Answer	Mark	AO		Notes
4	Working with all 12 boxes 12 × 15 (=180) or 12 × 12 (=144)			AO1	M1	for correct total cost or correct total number of melons (either may appear as part of another calculation)
	$12 \times 12 \times \frac{3}{4} \times 1.6$ oe (=172.8)				M1	for revenue from all full price melons sold
	12 × 15 × 1.15 oe (=207) or				M1	for total revenue or total profit
	180 × 0.15 oe (=27)					
	$\frac{'207'-'172.8'}{36}$ or $\frac{34.2}{36}$ or				M1	dep on M3
	'27'+ ('180'- '172.8')					
	36	0.95	5		A1 cao	
	Alternative – working with one box $15 \div 12 \ (=1.25) \ \text{or} \ 12 \times \frac{3}{4} \ (=9)$				M1	for price of 1 melon or number of full price melons
	$12 \times \frac{3}{4} \times 1.6$ oe (=14.4)				M1	for revenue from all full price melons sold
	15 × 1.15(=17.25)				M1	for total revenue from one box
	$\frac{"17.25" - "14.4"}{3}$ or $\frac{2.85}{3}$				M1	dep on M3
		0.95	5		A1 cao	

Question	Working	Answer	Mark	AO		Notes	
5	Circular arc, centre <i>B</i> , to intersect both lines <i>AB</i> and <i>BC</i>			AO2	M1		
	Equal length arcs, from intersections on each line, meeting to give a point on the bisector						
		correct bisector	2		A1	dep on M1. Full construction sl	nown.
6 a				AO1	M1	Any correct partially factorised	expression
		$9e^2f(2e+5f^3)$	2		A1		
b	$(x \pm 6)(x \pm 2)$			AO1	M1	or correct substitution into quad sign error)	dratic formula (condone one
	(x-6)(x+2)				M1	or $\frac{4 \pm \sqrt{64}}{2}$	
		6, -2	3		A1	dep. on at least M1	
7	$\cos 35 = \frac{PR}{17.6}$			AO2	M1		
	17.6 × cos35				M1		
		14.4	3		A1	14.4 ~ 14.42	
8	22.50 ÷ 15 (=1.5) or 100 ÷ 15 (=6.6)			AO1	M1		M2 for 22.5 ÷ 0.15
	'1.5' × 100 (=150) or '6.6' × 22.5(0)				M1	dep	
		150	3		A1		

Questio	n Working	Answer	Mark	AO		Notes
9	1	140 000	1	AO1	B1	
]		Mars	1	AO1	B1	
	$1.2 \times 10^5 - 5 \times 10^4 \text{ or}$			AO1	M1	
	120 000 – 50 000 or 70 000 oe					
		7×10^4	2		A1	
	$3.5 \times 10^3 : 1.4 \times 10^6$			AO1	M1	
		1:400	2		A1	
10	$\sqrt{9.5^2 - 7.6^2}$ or $\sqrt{90.25 - 57.76}$ or			AO2	M1	
10	$\sqrt{32.49}$ or $\sqrt{32.5}$					
	(BC =) 5.7				A1	
	$\frac{1}{2} \times 7.6 \times 5.7$ or 21.6(6) or 21.7				M1	dep on first M1
						or eg. $ACB = \sin^{-1}\left(\frac{7.6}{9.5}\right)$ (=53.1) and
						$\frac{1}{2} \times 9.5 \times 5.7' \times \sin 53.1'$
	$\frac{1}{2} \times \pi \times \left(\frac{5.7}{2}\right)^2$ or 12.7(587) or 12.8				M1	dep on first M1
		34.4	5		A1	for answer rounding to 34.4
						$(\pi \rightarrow 34.4187\ 3.14 \rightarrow 34.4123)$

Question	Working	Answer	Mark	AO		Notes
11	e.g. $(x^2 + 5x - 3x - 15)(x + 3)$ or			AO1	M1	expansion of any two of the three brackets – at least 3 correct terms
	$(x^2 + 2x - 15)(x + 3)$ or					
	$(x-5)(x^2+3x-3x-9)$ or					
	$(x-5)(x^2-9)$					
	E.g. $x^3 + 3x^2 + 2x^2 + 6x - 15x - 45$ or				M1	(dep) ft for at least 3 correct terms in second expansion
	$x^3 + 5x^2 - 9x - 45$					
		$x^3 + 5x^2 - 9x - 45$	3		A1	
12 a	14 16 17 18 20 21 22 23 23 24 24			AO3	M1	arrange in order or One of 21(median), 17(LQ), 23(UQ) identified
	(14 16 17 18 20 <u>21</u> 22 23 23 24 24)				M1	Identify any two of 21, 17 and 23
	(14 16 <u>17</u> 18 20) and					
	(22 23 <u>23</u> 24 24) 23 – 17					
		6	3		A1 cao	
b		Carmelo and reason using IQR	1	AO3	B1	ft from (a) Carmelo - he has a lower IQR oe (IQR must be part of the statement)

Questi	ion	Working	Answer	Mark	AO		Notes
13	a	$m = \frac{5-2}{-3-1}$ or $-\frac{3}{4}$ oe			AO1	M1	for gradient
		eg. $2 = -\frac{3}{4} \times 1 + c$ or				M1	for method to find c
		$y-2 = -\frac{3}{4}(x-1)$					
		$y = -\frac{3}{4}x + \frac{11}{4}$				M1	found values of m and c substituted in $y = mx + c$
			3x + 4y = 11	4		A1	
	b	$y = \frac{1 - 2x}{6}$ or $m = -\frac{1}{3}$ oe			AO1	M1	
			shown	2		A1	for conclusion from correct gradients
14		26 ÷ 20 (=1.3) or			AO3	M1	Any one frequency density (without contradiction) or,
		$3.6 \times 10 \text{ or } 3.3 \times 10 \text{ or } 1 \times 30 \text{ or}$					e.g. $1 \text{cm}^2 = 5$ or clear association of area with frequency
		36 or 33 or 30 or $\frac{26}{130} \left(= \frac{1}{5} \right)$					
		$26 + 3.6 \times 10 + 3.3 \times 10 + 1 \times 30$ or				M1	Any fully correct complete method; condone one error in bar width or bar height
		$26 + 36 + 33 + 30 \text{ or } 625 \times \frac{1}{5} \text{ or}$					
		$(130 + 180 + 165 + 150) \times \frac{1}{5}$					
			125	3		A1	

Pearson Edexcel International GCSE in Mathematics (Specification A) – Sample Assessment Materials Issue 1 – February 2016 © Pearson Education Limited 2016

Question	Working	Answer	Mark	AO	Notes
15 a	(3x+2)(2x+1) = 100			AO1,	M1 or $(2x \times 3x) + 2(2x + 1) + 3x = 100$ oe
				AO2	or $(2x \times 3x) + (2 \times 2x \times 1) + 1 + 3x + 1 + 1 = 100$ oe
					other partitions are acceptable but partitioning must go on to form a correct equation.
		$6x^2 + 7x - 98 = 0 *$	2		A1 Accept $6x^2 + 7x + 2 = 100$ if M1 awarded
					* Answer given
b	(3x+14)(2x-7) (=0)			AO1	M2 or $(x =) \frac{-7 \pm \sqrt{49 + 2352}}{12}$ or $(x =) \frac{-7 \pm \sqrt{2401}}{12}$
					If not M2 then M1 for $(3x \pm 14)(2x \pm 7)$
					or $(x =)$ $\frac{-7 \pm \sqrt{7^2 - 4 \times 6 \times -98}}{2 \times 6}$
	x = 3.5				A1 Dependent on at least M1 Ignore negative root
	(Area =)				M1 ft Dependent on at least M1 and $x > 0$
	6×3.5^{2} or $(3 \times 3.5) \times (2 \times 3.5)$				
		73.5	5		A1

Question	Working	Answer	Mark	AO		Notes
16	180 – 77 – 39 or			AO2	M2	Also accept 103-39
	$\angle BAD = 77^{\circ} \text{ and } \angle ABD = 39^{\circ} \text{ or }$					
	$\angle BA$ " X"= 64° where X is on PA					M1 for $\angle BAD = 77^{\circ}$ or $\angle ABD = 39^{\circ}$
	produced or					(angles may be stated or marked on diagram)
	a fully correct method to find angle					
	ADB				B1	Opposite angles in a cyclic quadrilateral add up to 180°
					B1	Alternate segment theorem oe
		64	5		A1	cao
17	41.5 or 42.5 or 24.5 or 23.5 or 14.5 or 13.5			AO1	B1	
	$(y=)\frac{2\times41.5}{24.5-13.5}$				M1	
	$(y^{-})^{-}$ 24.5–13.5	7.5	3		A1	A1 accept $\frac{83}{11}$ or 7.55 or 7.54 (depending on M1)
						NB. Answer must come from correct working

Question	Working	Answer	Mark	AO		Notes
18	$(x-1) \times \frac{(3x+2)}{(x^2-1)}$			AO1	M1	correct method for divsion
	(x+1)(x-1)				M1	correct factorisation of $x^2 - 1$
	eg $\frac{3(x+1)-(3x+2)}{(x+1)}$				M1	correct single fraction
		$\frac{1}{x+1}$	4		A1	
19	$130 = \pi \times 4.5 \times l$			AO2	M1	
	$l = \frac{130}{4.5\pi} \text{ or } l = 9.1956$				M1	For exact expression or answer which rounds to 9.2
	$\sin(AVO) = \frac{4.5}{"9.2"} (= 0.489)$				M1	For a correct expression for $\sin AVO$ or $\cos AVB$ $\cos (AVB) = ("9.2"^2 + "9.2"^2 - 9^2)/(2 \times "9.2" \times "9.2")$ (=0.521)
		58.6	4		A1	awrt 58.6
20 ai		(0, 5)	1	AO1	B1	
aii		(3, 10)	1		B1	
aiii		(1, 5)	1		B1	
b		translation $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$	1	AO1	B1	

Question	Working	Answer	Mark	AO	Notes
21	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2 \times 8x - 2x^{-2}$			AO1	M2 (M1 for one term differentiated correctly)
	$2 \times 8x - 2x^{-2} = 0$				M1 dep on M1
	$x = \frac{1}{8}$ or $x = 0.5$ oe				M1
		(0.5, 6)	5		A1
22	$\overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} \text{ oe}$			AO2	M1 may be fully or partially in terms of a and/or b
	eg. $\overrightarrow{DE} = \frac{1}{3}\overrightarrow{DB}$ or $\overrightarrow{BE} = \frac{2}{3}\overrightarrow{BD}$				M1 correct use of ratio
					A1
	$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC} (=3\mathbf{b} + 6\mathbf{a})$				M1 may be fully or partially in terms of a and/or b
		eg. $\overrightarrow{AE} = 2(\mathbf{b} + 2\mathbf{a})$ and $\overrightarrow{BC} = 3(\mathbf{b} + 2\mathbf{a})$			A1 NB Correct expressions for <i>BC</i> and <i>AE</i> must be given
		and $\overrightarrow{BC} = 3(\mathbf{b} + 2\mathbf{a})$	5		

Question	Working	Answer	Mark	AO		Notes		
23	a + 3d = 17 or $a + 9d = 35$ or			AO1	M1		M1 for $17 = 4p + q$ and $35 = 10p + q$	
	35 - 17 = 6d				A1		p = 3 and q = 5	
	d=3				A1	ft from $d = 3$	$u_1 = 8$ and $u_{50} = 155$	
	a = 8				M1		$\frac{1}{2} \times 50(8+155)$	
	$\frac{50}{2}$ (2 × '8' + (50 – 1) '3') oe	4075	5		A1			